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Abstract. We consider collaborative graph exploration with a set of k agents. All agents start
at a common vertex of an initially unknown graph with n vertices and need to collectively visit
all other vertices. We assume agents are deterministic, moves are simultaneous, and we allow
agents to communicate globally. For this setting, we give the first non-trivial lower bounds that
bridge the gap between small (k ≤

√
n) and large (k ≥ n) teams of agents. Remarkably, our

bounds tightly connect to existing results in both domains.
First, we significantly extend a lower bound of Ω(log k/ log log k) by Dynia et al. on the compet-
itive ratio of a collaborative tree exploration strategy to the range k ≤ n logc n for any c ∈ N.
Second, we provide a tight lower bound on the number of agents needed for any competitive
exploration algorithm. In particular, we show that any collaborative tree exploration algorithm
with k = Dn1+o(1) agents has a competitive ratio of ω(1), while Dereniowski et al. gave an algo-
rithm with k = Dn1+ε agents and competitive ratio O(1), for any ε > 0 and with D denoting the
diameter of the graph. Lastly, we show that, for any exploration algorithm using k = n agents,
there exist trees of arbitrarily large height D that require Ω(D2) rounds, and we provide a simple
algorithm that matches this bound for all trees.

1 Introduction

Graph exploration captures the problem of navigating an unknown terrain with a single or multiple
autonomous robots. In the abstract setting, we take the perspective of an agent that is located at
some vertex of an initially unknown graph, can locally distinguish edges at its current location, and
can choose an edge to traverse in its next move. Various scenarios for graph exploration have been
studied in the past, for different graph classes and different capabilities of the agent(s). A fundamental
goal of exploration is to systematically visit all vertices/edges of the underlying graph. For settings
where exploration is possible, we typically ask for efficient exploration algorithms, e.g., in terms of the
number of edge traversals.

In this paper, we consider collaborative exploration, where a set of k agents are initially located
at some vertex of an unknown undirected graph. We assume agents to move deterministically, allow
them to freely communicate at all times, and to have unlimited computational power and memory
at their disposal. In every round each agent may traverse any edge incident to its current location,
where the edges incident to a vertex are revealed when that vertex is visited for the first time. The
goal is to visit all vertices while minimizing the number of rounds. More precisely, we are interested
in the competitive ratio of an exploration strategy, i.e., the worst case ratio between the total number
of rounds it needs and the minimum total number of rounds needed to visit all vertices of the same
graph, assuming it is known beforehand. We prove new lower bounds for the best-possible competitive
ratio of any collaborative exploration algorithm. Our bounds hold even for the much simpler setting of
tree exploration. Note that since our results concern trees, it makes no difference whether nodes can
be distinguished, and whether the agents need to visit all edges or not.
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Let Tn,D denote set of all rooted trees with n vertices and height D. Each such tree corresponds
to an instance of the tree exploration problem in which all k agents start at the root of the tree.
Clearly, any offline exploration algorithm needs Ω(n/k +D) rounds to explore a tree in Tn,D using k
agents. This is shown to be tight by the following offline exploration algorithm that explores the tree in
Θ(n/k+D) rounds: start with the tree T , double its edges, find an Eulerian tour C (of length 2n− 2),
distribute the agents evenly on C (this takes at most D rounds), and explore T by letting each agent
walk along C for O(n/k) rounds.

In the online setting, we can explore a tree in Tn,D with a single agent using a depth-first traversal
in time O(n) and thus we trivially have a competitive ratio of O(1) when k is constant. On the other
hand, with k ≥ ∆D agents, where ∆ is the maximum degree of the tree, we can simply perform a
breadth-first traversal, which takes O(D) steps and thus also has competitive ratio O(1). Observe that
in the first case n/k dominates the lower bound on the offline optimum, while in the second case D is
dominating. We are interested in the best-possible competitive ratios between these two extreme cases.

Surprisingly, Dereniowski et al. [12] showed that already a polynomial number k = Dn1+ε of
agents allows for a BFS-like algorithm that achieves a constant competitive ratio. For smaller teams
of agents, Fraigniaud et al. [18, 20] gave a collaborative algorithm with competitive ratio O(k/ log k).
This is only slightly better than the trivial upper bound of O(k) that we get by performing a depth first
traversal with a single agent. Ortolf and Schindelhauer [23] improved this competitive ratio to ko(1)
for k = 2ω(

√
logD log logD) and n = 2O(2

√
log D). The only non-trivial lower bound for collaborative tree

exploration was given by Dynia et al. [16]. They showed that any deterministic exploration algorithm
for k <

√
n agents has competitive ratio Ω(log k/ log log k).

Our Results

We give the first non-trivial lower bounds on the competitive ratio for collaborative tree exploration
in the domain k ≥

√
n (cf. Figure 1). More precisely, we show that for every constant c ∈ N, any given

deterministic exploration strategy with k ≤ n logc n agents has competitive ratio Ω(log k/ log log k) on
the set of all trees on n vertices. Note that this extends the range of the bound by Dynia et al. [16]
for k <

√
n significantly.

Secondly, we show that for every constant ε > 0, there is a constant D = D(ε) such that for any
exploration algorithm with k ≤ Dn1+ε agents, there exists a tree in Tn,D on which the algorithm needs
at least D/(5ε) rounds. This (almost) tightly matches the algorithm of Dereniowski et al. [12], which
can explore any tree in at most (1+ o(1))D/ε rounds using k = Dn1+ε agents. Our result implies that
any exploration algorithm with k = Dn1+o(1) agents has competitive ratio ω(1). More precisely, we
get that for any function 0 ≤ f(n) ≤ o(1), there is a function D = D(n) such that every exploration
algorithm with k = Dn1+f(n) agents has competitive ratio ω(1) on the trees in Tn,D. In contrast,
the algorithm of Dereniowski et al. shows that k = Dn1+ε agents are sufficient to get a competitive
ratio O(1) on such trees.

Finally, for every exploration algorithm with k = n, we construct a tree of height D = ω(1) where
the algorithm needs O(D2) rounds. We give a simple algorithm that achieves this bound in general.

Further Related Work

Many variants of graph exploration with a single agent have been studied in the past. Any (strongly)
connected graph with distinguishable vertices can easily be explored in polynomial time by systemati-
cally building a map of the graph. Regarding the exploration of undirected graphs with indistinguishable
vertices, Aleliunas et al. [2] showed that a random walk explores any graph in O(n3∆2 log n) steps, with
high probability. In order to turn this into a terminating exploration algorithm the agent needs Ω(log n)
bits of memory. Fraigniaud et al. [19] showed that every deterministic algorithm needs Ω(log n) bits
of memory, and Reingold [25] gave a matching upper bound. Disser et al. [14] showed that alterna-
tively Θ(log log n) pebbles and bits of memory are necessary and sufficient for exploration, where a
pebble is a device that can be dropped to make a vertex distinguishable and that can be picked up
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Fig. 1. State of the art in collaborative tree exploration. Upper bounds are green and lower bounds are red.
Thick lines show our results.

and reused later. Diks et al. [13] showed that trees can be explored with O(log∆) memory, and that
Ω(log n) memory is required if the agent needs to eventually terminate at the start vertex. Ambühl [4]
gave a matching upper bound for the latter result.

For the case of directed graphs with distinguishable vertices, Albers and Henzinger [1] gave an
exploration algorithm with subexponential running time dO(log d)m that learns a map of the graph.
Here m denotes the number of edges and d is the deficiency of the graph, i.e., the number of edges
missing to make the graph Eulerian. This results narrows the gap between a quadratic lower bound
and an exponential upper bound introduced by Deng and Papadimitriou [11].

An even more challenging setting (for the agent) is the exploration of directed, strongly connected
graphs with indistinguishable vertices. In general the agent needs exponential time to explore a graph
in this setting. On the other hand, Bender and Slonim [7] showed that two agents can explore any
directed graph in polynomial time, using a randomized strategy. Bender et al. [6] showed that to
accomplish this with a single agent we need Θ(log log n) pebbles, i.e., “a friend is worth O(log log n)
pebbles”. Remarkably, Bender et al. [6] also showed that if the number of vertices is known beforehand,
a deterministic agent with a single pebble can explore any directed graph in polynomial time O(n8∆2).

The lower bounds for collaborative tree exploration discussed above carry over to the collabora-
tive exploration of general undirected graphs with distinguishable vertices. Also, the algorithm of
Dereniowski et al. [12] for k = Dn1+ε works on general graphs. Additionally, Ortolf and Schin-
delhauer [22] gave a lower bound on the best-possible competitive ratio for randomized algorithms
of Ω(

√
log k/ log log k) for k =

√
n. Collaborative exploration by multiple random walks without com-

munication has been considered by Alon et al. [3], Elsässer and Sauerwald [17], and Ortolf and Schin-
delhauer [24].

Graph exploration has been studied in many other settings. Examples include tethered exploration
or exploration with limited fuel [5, 15], exploration of mazes [8, 21], and exploration of polygonal envi-
ronments [9, 10].

2 Results

Our first result extends the lower bound for k <
√
n agents of Dynia et al. [16] to the much larger

range k ≤ n logO(1) n. We prove the following theorem:
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Theorem 1. Let c be any positive integer constant. Then for every n and every 1 ≤ k ≤ n logc n there
is some D = D(n, k, c) such that the following holds: for any given deterministic exploration strategy
with k agents, there exists a tree T on n vertices and with height D on which the strategy needs

Ω
( log k

log log k
· (n/k +D)

)
rounds.

As mentioned above, there is an offline algorithm that explores any graph with n vertices and
height D in time Θ(n/k +D). From this, we obtain the following corollary to Theorem 1:

Corollary 1. Let c be any positive integer constant. Then any deterministic exploration strategy using
k ≤ n logc n agents has a competitive ratio of

Ω
( log k

log log k

)
.

Our second main result shows that the algorithm of Dereniowski et al. [12] that explores a graph
with k = Dn1+ε agents in time (1+o(1))D/ε is almost optimal: using k ≤ Dn1+ε agents it is generally
impossible to explore the graph in fewer than D/(5ε) rounds.

Theorem 2. Given any constant ε > 0 there is an integer D = D(ε) such that for sufficiently large
n and for every deterministic exploration strategy using k ≤ D · n1+ε agents, there exists a tree on n
vertices and with height D on which the strategy needs at least D/(5ε) rounds.

In the range where k ≥ n, the offline optimum is determined by the height D of the tree. Therefore,
the result of Dereniowski et al. mentioned above implies that the competitive ratio is constant when
k = D · n1+Ω(1). Theorem 2 shows in particular that this is tight in the following sense:

Corollary 2. For any function 0 ≤ f(n) ≤ o(1), there is a function D = D(n) such that the com-
petitive ratio of any deterministic exploration strategy using k = D · n1+f(n) agents is ω(1) on the the
set Tn,D of all rooted trees with n vertices and height D.

However, note that here we have no control over the height of the worst-case example: for instance,
it could be that there are ranges for D where the algorithm of Dereniowski et al. may be improved.

Finally, it is possible for k = n agents to explore any tree on n vertices and of height D in D2

rounds using a breadth-first exploration strategy. More precisely, we can split the D2 rounds in D
phases of length D, and in each phase 1 ≤ i ≤ D do the following. Let Ai be the set of unvisited leaves
of the tree that is known to the agents at the start of phase i. Then we send one agent to each vertex
in Ai along a shortest path. This is clearly doable in D rounds, and constitutes a single phase. After
phase i, the agents have explored all vertices at distance at most i from the root. Therefore, after D
such phases, the tree is completely explored. We show that the running time of D2 is optimal up to a
constant factor:

Theorem 3. For every n and every deterministic exploration strategy using k = n agents, there exists
a tree T on n vertices and with height D = ω(1) such that the strategy needs at least D2/3 rounds to
explore T .

In all the results above, we have considered the worst-case performance of an exploration strategy
on any tree. However, by looking at the proofs of Theorems 1 and 2, one can see that the heights of
our lower bound constructions are typically quite small. We believe it is also natural to ask about the
competitive ratio on the set of trees of height at least D, for a given D. We show that at least for
subpolynomial heights, the competitive ratio with k = Θ(n) agents is unbounded:

Theorem 4. For any function D ≤ no(1) and any exploration strategy using k = Θ(n) agents, the
competitive ratio on the set of all trees of size n and height at least D is ω(1).

We stress that Theorem 4 differs from the other results in that it gives a measure of control over the
height of the adversarial example, while the other results merely state that there exists some height
on which the algorithm must perform poorly.
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3 Tree exploration games

In order to prove a lower bound on the competitive ratio, we consider a tree exploration game defined
as follows. By a tree exploration game with k agents we mean a game with two players, the explorer
(the online algorithm) and the revealer (the adversary), played according to the following rules. The
game proceeds in rounds which we index by the variable t (‘time’), the first round being t = 0. The
state of the game at time t is described by a triple (Tt, At, φt), where Tt is a rooted tree (the tree
revealed at the beginning of round t), At is a subset of the vertices of Tt (the subset of visited vertices
by round t), and φt : {1, . . . , k} → At is an assignment of the agents to the vertices (where φt(i) is the
location of the i-th agent at time t). In round t = 0 the revealer decides on the initial tree T0. The state
at time 0 is then given by (T0, A0, φ0) where A0 = {root(T0)} and φ0(x) = root(T0) for all 1 ≤ x ≤ k
– that is to say, all agents are initially at the root of T0. In every round t > 0, each player can make a
move. First, the explorer creates a new assignment φt by moving each agent i to a neighbor of φt−1(i)
in Tt−1 or by keeping the location of the agent same, i.e., φt(i) = φt−1(i). Then the revealer decides
on the new tree Tt, where Tt must be obtained from Tt−1 by attaching (possibly empty) trees at some
vertices v ∈ V (Tt−1) \At−1, where V (Tt−1) is the set of vertices of Tt−1. We then let At = At−1 ∪Nt
where Nt = {φt(i) : 1 ≤ i ≤ k} is the set of the new agent locations. The game ends in round t∗ if all
vertices of Tt∗ are visited at the beginning of round t∗, i.e., if At∗ = V (Tt∗).

This type of game naturally lends itself to proving lower bounds for the time in which k agents can
explore an unknown tree. Specifically, consider any deterministic strategy for exploring an unknown
tree T with k agents. Such a strategy can be interpreted as a strategy for the explorer in the tree
exploration game with k agents. If the revealer can play so that the game lasts for at least t∗ rounds,
then this means that the proposed exploration strategy needs t∗ rounds to explore the tree Tt∗ . We will
use this observation to prove lower bounds for the online graph exploration in the following section.

As a side remark, here it is crucial that the strategy is deterministic: if the strategy were allowed to
make random choices, then the tree Tt∗ would turn out to be a random variable that might be highly
correlated with the random choices made by the explorer, and it could not serve as an instance on
which the strategy performs badly.

4 Lower bound construction

We now give our lower bound construction that establishes the following technical lemma.

Lemma 1. Let n,L,m be positive integers such that n ≥ L · 16m. Then for any deterministic explo-
ration strategy using

k ≤ n1+1/m

6L(m+ 1)2(2L)1/m

agents, there exists a tree T on n vertices and of height Lm such that the strategy needs at least L
(
m
2

)
rounds to explore T .

The parameter L is mostly there to force a large diameter. For a first understanding it does not hurt
to imagine that L = 1 and to think of m as being a function tending to infinity very slowly as n grows.
Then the lemma shows that n1+o(1) vertices need ω(1) rounds to explore the tree.

Proof. Assume that integers n, L and m as above are given. Let k be any integer such that 1 ≤ k ≤
n1+1/m/(6L(m+ 1)2(2L)1/m). To prove the lemma, we will describe a strategy for the revealer in the
tree exploration game with k agents such that

– the game does not end before round t∗ := L ·
(
m
2

)
, and

– the tree Tt∗ has height Lm and at most n vertices,
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where the notation is as in Section 3. Note that this is enough to prove the lemma.
The main difficulty is that there are several trade-offs involved. On the one hand, the game has to

keep going for t∗ rounds, that is, it must not happen that the agents explore the whole tree at any time
before t∗. This requires us to grow the tree at several critical times, when the agents may come close
to exploring everything. On the other hand, we do not want to grow the tree too often, or too much,
because the final tree must consist of at most n vertices. Lastly, there is the (less severe) constraint
that we want the constructed tree to have a certain height, which we must keep in mind.

Before explaining the strategy, we fix some notation. Let

α := (2L/n)1/m and ti := L ·
(
i+ 1

2

)
for 0 ≤ i < m. For each t ≥ 0 we can consider the equivalence relation ∼t on V (Tt) where u ∼t v
if there exists a path between u and v in Tt that avoids the root of Tt (i.e., if they have a common
ancestor that is not the root). Since T0 ⊆ T1 ⊆ T2 ⊆ . . . are trees with the same root, we will just write
u ∼ v instead of u ∼t v without causing confusion. Then we define at(v) := |{x | φt(x) ∼ v}|. In other
words, at(v) counts the total number of agents that could reach vertex v without passing through the
root (under the assignment φt). We think of those agents as being ‘near’ the vertex v.

The times t1, t2, t3, . . . are our ‘critical times’ at which the tree grows. The general idea is very
natural: at every critical time ti, we grow the tree in those places where there are the fewest agents
nearby. When doing this, we add sufficiently many vertices so that the agents that are currently nearby
cannot explore the newly added subtrees in before the next critical time ti+1. Similarly, everything is
set up so that the agents that are not nearby are unable to reach the location before the time ti+1.
Thus, the game keeps going until round ti+1. The parameter α enforces a sort of ‘iterative thinning’
of the tree, which allows us to be economical with the vertices. A precise description of the revealing
strategy is given in Algorithm 1.

Algorithm 1: The strategy for the revealer.
begin

let T0 be a ‘star’ consisting of dn/(2L)e paths of length L from the root;
foreach round t = 1, 2, 3, . . . do

let the explorer choose φt;
if t = ti for some 1 ≤ i < m then

let Ki be a maximal set of vertices in V (Tti−1) \Ati−1 s.t.

(i) every vertex in Ki has distance L · i to the root in Tti−1

(ii) there are no two distinct vertices u, v ∈ Ki with u ∼ v.

let Si ⊆ Ki be the dα|Ki|e vertices v ∈ Ki with least ati(v);
define Tti by attaching at each v ∈ Si a path of length L− 1 with a star with
L · (i+ 1) · ati(v) leaves at the end;

else
let Tt = Tt−1;

end
end

end

The set Si is the set of vertices where we grow the tree at time ti. For a better intuition, we refer
the reader to Figure 2, which shows what the tree constructed by this strategy might look like. We
establish three claims which are used to show that the algorithm indeed runs for at least t∗ = tm−1
rounds and that the tree constructed in this way has the right properties.
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Fig. 2. A sketch of the tree generated by the revealing strategy, for artificial values α = 1/3 and dn/(2L)e = 9
(degrees in the actual construction are much larger). The actual shape depends on the distribution of the
agents at times t1, t2. Dashed lines represent paths of the specified length.

Claim. For every 0 ≤ i < m the following holds. The height of Tti is at most L · (i+ 1). Moreover, if
S1, . . . , Si are all non-empty, then the height of Tti is exactly L · (i+ 1).

Proof. The tree Tti differs from Tti−1
if and only if Si is non-empty, and in this case it is obtained by

attaching trees of height L at some vertices with distance L · i to the root in Tti−1 . Since Tt0 = T0 has
height L, this implies the claim by induction. ut

Claim. For all 1 ≤ i < m and every v ∈ Si, there exists at least one descendant of v at depth L · (i+1)
in Tti+1−1 that does not belong to Ati+1−1. In particular, for all 1 ≤ i < m we have |Ki+1| = |Si|.

Proof. Each vertex at depth L(i+ 1) is a descendant of some vertex v ∈ Si. Moreover, we have u � v
for any two distinct u, v ∈ Si. Thus, the second claim follows directly from the first.

For the first claim, consider any 1 ≤ i < m and v ∈ Si. Note that

(1) at time ti we create L · (i+ 1) · ati(v) descendants of v at depth L · (i+ 1);
(2) ti+1 − ti = L · (i+ 1).

Because of this, no agent passing through the root can visit any descendant of v at depth L · (i + 1)
before round ti+1. On the other hand, the ati(v) agents that could visit a descendant at this depth
without passing through the root cannot visit all descendants before round ti+1. Thus at least one
descendant at depth L · (i+ 1) must be unvisited at the end of round ti+1 − 1. ut

Claim. For every 1 ≤ i < m we have the bounds

|Si| ≥
αin

2L
≥ 1

α
and |Si| ≤

(2α)in

2L
.
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Proof. By definition we have α = (2L/n)1/m < 1 and thus αm = 2L/n, which gives us

αin

2L
≥ αm−1n

2L
= 1/α

for all 1 ≤ i < m.
For the lower bound, note that since A0 contains only the root, we have |K1| = dn/(2L)e. By the

definition of Si, we have |Si| ≥ α|Ki| for all 1 ≤ i < m. Moreover, if 2 ≤ i < m then by Claim 4 we
have |Ki| = |Si−1|. The lower bound then follows by induction.

For the upper bound, note that K1 ≤ n/(2L) + 1 ≤ n/L, where the last inequality uses n ≥ 2L.
Moreover, using |Ki| ≥ 1/α we have |Si| ≤ α|Ki|+ 1 ≤ 2α|Ki| for all 1 ≤ i < m. Finally, if 2 ≤ i < m
then |Ki| = |Si−1| by Claim 4, and the upper bound follows by induction. ut

Since |Si| > 0 implies in particular that Ati−1 6= V (Tti−1), we conclude from Claim 4 that the game
does not stop before reaching round tm−1 = L ·

(
m
2

)
= t∗. Moreover, from Claim 4 and Claim 4 we see

that Ttm−1 is a tree with height L ·m. To complete the proof we need to show that |V (Ttm−1)| ≤ n.
We have

|V (Ttm−1
)| ≤ dn/(2L)e · L+ 1 +

m−1∑
i=1

∑
v∈Si

(L− 1 + L · (i+ 1) · ati(v))

≤ n/2 + L+ 1 +

m−1∑
i=1

L(i+ 1)
∑
v∈Si

ati(v) +

m−1∑
i=1

|Si|(L− 1). (1)

To bound the double sum note that |Ki| ≥ |Si| ≥ 1/α (Claim 4) implies that dα|Ki|e ≤ 2α|Ki|. Note
also that the sum

∑
v∈Ki

ati(v) in (1) is at most k, as no two vertices u, v from Ki are in the same
subtree, i.e., u 6∼ v. Since Si contains the dα|Ki|e ≤ 2α|Ki| vertices of Ki with least ati(v), we thus
have ∑

v∈Si

ati(v) ≤ 2α
∑
v∈Ki

ati(v) ≤ 2αk,

and therefore

m−1∑
i=1

L(i+ 1)
∑
v∈Si

ati(v) ≤ L(m+ 1)2αk. (2)

To bound the simple sum in (1), we use the upper bound from Claim 4 and obtain

m−1∑
i=1

|Si|(L− 1) ≤ (L− 1)

∞∑
i=1

(2α)in

2L
=
L− 1

2L
· 2αn

∞∑
i=0

(2α)i ≤ 2αn

2− 4α
. (3)

Combining (1) with (2) and (3), we get

|V (Ttm−1)| ≤ n/2 + L+ 1 + L(m+ 1)2αk +
2αn

2− 4α
. (4)

Since n ≥ L · 16m ≥ 12L we have L + 1 ≤ 2L ≤ n/6. By the definition α = (2L/n)1/m and the
assumption k ≤ n1+1/m/(6L(m+ 1)2(2L)1/m) we have

L(m+ 1)2αk = L(m+ 1)2(2L/n)1/mk ≤ n/6.

Finally, n ≥ L · 16m implies that α ≤ 1/8 and so the last term in (4) is also at most n/6. Hence
|V (Ttm−1)| ≤ n/2 + 3n/6 = n. ut
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5 Consequences for competitiveness

We now use Lemma 1 to derive consequences for best-possible competitive ratios of collaborative tree
exploration algorithms. In the proofs below, log is always to the natural base e.

Theorem 1. Let c be any positive integer constant. Then for every n and every 1 ≤ k ≤ n logc n there
is some D = D(n, k, c) such that the following holds: for any given deterministic exploration strategy
with k agents, there exists a tree T on n vertices and with height D on which the strategy needs

Ω
( log k

log log k
· (n/k +D)

)
rounds.

Proof. By the result of Dynia et al. [16] it suffices to consider the case where k ≥
√
n. Let c > 0 be

a constant and assume k ≤ n logc n. We apply Lemma 1 with m = d logn
(8+c) log logne and L = dn/(mk)e.

Using k ≥
√
n, we have L = O(

√
n) and m = o(log n) and thus n ≥ L · 16m holds for sufficiently large

n. The lemma states that if

k ≤ n1+1/m

6L(m+ 1)2(2L)1/m
(5)

then there is a tree of height D := Lm on which the strategy needs at least L
(
m
2

)
= Ω((n/k + D) ·

log k/ log log k) rounds. To complete the proof, we need to show that (5) holds for all 1 ≤ k ≤ n logc n.
We split the analysis to two cases. Let us first assume k ≥ n/m and thus L = 1. This implies

n1+1/m

6L(m+ 1)2(2L)1/m
≥ n1+1/m

24m2
≥ n log8+c n

24 log2 n
≥ k,

when k ≤ n logc n and for sufficiently large n.
Now we consider the case k < n/m. Using that assumption and the definition of L we obtain

L(m+ 1)2 ≤ 4mn/k and 2L ≤ 4n/(mk). Putting it all together we have

n1+1/m

6L(m+ 1)2(2L)1/m
=

n

6L(m+ 1)2

( n
2L

)1/m
≥ k

24m

(
mk

4

)1/m

≥ k,

where the last inequality holds for k ≥
√
n because, for sufficiently large n,

(mk)1/m ≥ k1/m ≥ e
log n
2m ≥ e

(8+c) log log n
4 ≥ (log n)2 ≥ 100m.

ut

Theorem 2. Given any constant ε > 0 there is an integer D = D(ε) such that for sufficiently large
n and for every deterministic exploration strategy using k ≤ D · n1+ε agents, there exists a tree on n
vertices and with height D on which the strategy needs at least D/(5ε) rounds.

Proof. We choose L = 1 and m = d1/2εe in Lemma 1. The claim is trivial unless ε < 1/5, so we
can eliminate rounding and assume generously that 1/m ≥ 1.4ε. The condition n ≥ L · 16m is clearly
satisfied for sufficiently large n.

By Lemma 1, there is a tree T of height m that needs time
(
m
2

)
≥ m/(5ε) to be explored, provided

the team has size at most (for n sufficiently large)

k ≤ n1+1.4ε/(12(m+ 1)2) ≤ m · n1+ε = D · n1+ε.

ut
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Theorem 3. For every n and every deterministic exploration strategy using k = n agents, there exists
a tree T on n vertices and with height D = ω(1) such that the strategy needs at least D2/3 rounds to
explore T .

Proof. We choose L = 1 and m = d
√
log n e in Lemma 1. Then n ≥ L · 16m holds for sufficiently large

n. Note also that for sufficiently large n,

n1+1/m

12(m+ 1)2
= Ω(n · e

√
logn/ log n) ≥ n.

The lemma now states that there exists a tree T of height m such that the given strategy with k = n
agents needs at least

(
m
2

)
rounds to explore T . Since for large enough n we have

(
m
2

)
≥ m2/3, this

implies the theorem. ut

Theorem 4. For any function D ≤ no(1) and any exploration strategy using k = Θ(n) agents, the
competitive ratio on the set of all trees of size n and height at least D is ω(1).

Proof. Suppose that D ≤ no(1), i.e., D = n1/f(n), where f(n) is a function which tends to infinity with
n. Let L = D and note that we have

16L1/m

n1/m
≤ L1+1/m(m+ 1)2

n1/m
≤ 4m2n2/f(n)

n1/m
.

If we choose m = m(n) = ω(1) as a function growing sufficiently slowly such that we have m ≤
min{(f(n))1/2, (log n)1/2}, then the following is true:

4m2n2/f(n)

n1/m
= 4 · e2 logm+2(logn)/f(n)−logn/m → 0.

This implies 16L1/m = o(n1/m) and L1+1/m(m + 1)2 = o(n1/m). In particular, n ≥ L · 16m for
sufficiently large n. Moreover, if n is large enough then k = Θ(n) implies

n1+1/m

6L(m+ 1)2(2L)1/m
=
n1+1/m

o(n1/m)
≥ k.

By Lemma 1, there exists a tree T with height Lm ≥ D on which the strategy needs L
(
m
2

)
= ω(Lm)

rounds. Since k = Θ(n), the offline optimum is O(Lm + n/k) = O(Lm), so the competitive ratio on
the set of trees of height at least D is ω(1), as claimed. ut

6 Conclusions

In this paper we presented new lower bounds for collaborative tree exploration. Including our results,
the following bounds are now known. For k = O(1) or k ≥ D · n1+ε agents, a competitive ratio
of Θ(1) can be achieved. For ω(1) ≤ k ≤ n logc n, the best-possible competitive ratio is bounded
by Ω(log k/ log log k), and no constant competitive ratio is possible when n logc n ≤ k ≤ D · n1+o(1).
On the other hand, the best exploration algorithms for trees in the domain k ≤ D · n1+o(1) stay close
to the trivial competitive ratio of k (the best ratios are k/ log k and ko(1), depending on the domain).

In summary, we now fully understand the domain where constant competitive ratios are possible,
but, outside this domain, a wide gap persists.
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